6,686 research outputs found

    Uncertainty in climate science and climate policy

    Get PDF
    This essay, written by a statistician and a climate scientist, describes our view of the gap that exists between current practice in mainstream climate science, and the practical needs of policymakers charged with exploring possible interventions in the context of climate change. By `mainstream' we mean the type of climate science that dominates in universities and research centres, which we will term `academic' climate science, in contrast to `policy' climate science; aspects of this distinction will become clearer in what follows. In a nutshell, we do not think that academic climate science equips climate scientists to be as helpful as they might be, when involved in climate policy assessment. Partly, we attribute this to an over-investment in high resolution climate simulators, and partly to a culture that is uncomfortable with the inherently subjective nature of climate uncertainty.Comment: submitted as contribution to Conceptual Foundations of ClimateModeling, Winsberg, E. and Lloyd, E., eds., The University of Chicago Pres

    On the use of simple dynamical systems for climate predictions: A Bayesian prediction of the next glacial inception

    Full text link
    Over the last few decades, climate scientists have devoted much effort to the development of large numerical models of the atmosphere and the ocean. While there is no question that such models provide important and useful information on complicated aspects of atmosphere and ocean dynamics, skillful prediction also requires a phenomenological approach, particularly for very slow processes, such as glacial-interglacial cycles. Phenomenological models are often represented as low-order dynamical systems. These are tractable, and a rich source of insights about climate dynamics, but they also ignore large bodies of information on the climate system, and their parameters are generally not operationally defined. Consequently, if they are to be used to predict actual climate system behaviour, then we must take very careful account of the uncertainty introduced by their limitations. In this paper we consider the problem of the timing of the next glacial inception, about which there is on-going debate. Our model is the three-dimensional stochastic system of Saltzman and Maasch (1991), and our inference takes place within a Bayesian framework that allows both for the limitations of the model as a description of the propagation of the climate state vector, and for parametric uncertainty. Our inference takes the form of a data assimilation with unknown static parameters, which we perform with a variant on a Sequential Monte Carlo technique (`particle filter'). Provisional results indicate peak glacial conditions in 60,000 years.Comment: superseeds the arXiv:0809.0632 (which was published in European Reviews). The Bayesian section has been significantly expanded. The present version has gone scientific peer review and has been published in European Physics Special Topics. (typo in DOI and in Table 1 (psi -> theta) corrected on 25th August 2009

    The Fast Multipole Method and Point Dipole Moment Polarizable Force Fields

    Full text link
    We present an implementation of the fast multipole method for computing coulombic electrostatic and polarization forces from polarizable force-fields based on induced point dipole moments. We demonstrate the expected O(N)O(N) scaling of that approach by performing single energy point calculations on hexamer protein subunits of the mature HIV-1 capsid. We also show the long time energy conservation in molecular dynamics at the nanosecond scale by performing simulations of a protein complex embedded in a coarse-grained solvent using a standard integrator and a multiple time step integrator. Our tests show the applicability of FMM combined with state-of-the-art chemical models in molecular dynamical systems.Comment: 11 pages, 8 figures, accepted by J. Chem. Phy

    Efficient dielectric matrix calculations using the Lanczos algorithm for fast many-body G0W0G_0W_0 implementations

    Get PDF
    We present a G0W0G_0W_0 implementation that assesses the two major bottlenecks of traditional plane-waves implementations, the summations over conduction states and the inversion of the dielectric matrix, without introducing new approximations in the formalism. The first bottleneck is circumvented by converting the summations into Sternheimer equations. Then, the novel avenue of expressing the dielectric matrix in a Lanczos basis is developed, which reduces the matrix size by orders of magnitude while being computationally efficient. We also develop a model dielectric operator that allows us to further reduce the size of the dielectric matrix without accuracy loss. Furthermore, we develop a scheme that reduces the numerical cost of the contour deformation technique to the level of the lightest plasmon pole model. Finally, the use of the simplified quasi-minimal residual scheme in replacement of the conjugate gradients algorithm allows a direct evaluation of the G0W0G_0W_0 corrections at the desired real frequencies, without need for analytical continuation. The performance of the resulting G0W0G_0W_0 implementation is demonstrated by comparison with a traditional plane-waves implementation, which reveals a 500-fold speedup for the silane molecule. Finally, the accuracy of our G0W0G_0W_0 implementation is demonstrated by comparison with other G0W0G_0W_0 calculations and experimental results.Comment: 19 pages, 2 figure

    Towards a Semantic Search Engine for Scientific Articles

    Full text link
    Because of the data deluge in scientific publication, finding relevant information is getting harder and harder for researchers and readers. Building an enhanced scientific search engine by taking semantic relations into account poses a great challenge. As a starting point, semantic relations between keywords from scientific articles could be extracted in order to classify articles. This might help later in the process of browsing and searching for content in a meaningful scientific way. Indeed, by connecting keywords, the context of the article can be extracted. This paper aims to provide ideas to build such a smart search engine and describes the initial contributions towards achieving such an ambitious goal

    Electron-phonon coupling in the C60 fullerene within the many-body GW approach

    Full text link
    We study the electron-phonon coupling in the C60 fullerene within the first-principles GW approach, focusing on the lowest unoccupied t1u three-fold electronic state which is relevant for the superconducting transition in electron doped fullerides. It is shown that the strength of the coupling is significantly enhanced as compared to standard density functional theory calculations with (semi)local functionals, with a 48% increase of the electron-phonon potential Vep. The calculated GW value for the contribution from the Hg modes of 93 meV comes within 4% of the most recent experimental values. The present results call for a reinvestigation of previous density functional based calculations of electron-phonon coupling in covalent systems in general.Comment: 4 pages, 0 figur

    Bromophenyl functionalization of carbon nanotubes : an ab initio study

    Get PDF
    We study the thermodynamics of bromophenyl functionalization of carbon nanotubes with respect to diameter and metallic/insulating character using density-functional theory (DFT). On one hand, we show that the activation energy for the grafting of a bromophenyl molecule onto a semiconducting zigzag nanotube ranges from 0.73 eV to 0.76 eV without any clear trend with respect to diameter within numerical accuracy. On the other hand, the binding energy of a single bromophenyl molecule shows a clear diameter dependence and ranges from 1.51 eV for a (8,0) zigzag nanotube to 0.83 eV for a (20,0) zigzag nanotube. This is in part explained by the transition from sp2 to sp3 bonding occurring to a carbon atom of a nanotube when a phenyl is grafted to it and the fact that smaller nanotubes are closer to a sp3 hybridization than larger ones due to increased curvature. Since a second bromophenyl unit can attach without energy barrier next to an isolated grafted unit, they are assumed to exist in pairs. The para configuration is found to be favored for the pairs and their binding energy decreases with increasing diameter, ranging from 4.34 eV for a (7,0) nanotube to 2.27 eV for a (29,0) nanotube. An analytic form for this radius dependence is derived using a tight binding hamiltonian and first order perturbation theory. The 1/R^2 dependance obtained (where R is the nanotube radius) is verified by our DFT results within numerical accuracy. Finally, metallic nanotubes are found to be more reactive than semiconducting nanotubes, a feature that can be explained by a non-zero density of states at the Fermi level for metallic nanotubes.Comment: 7 pages, 5 figures and 3 table
    • …
    corecore